Advertisement

Microbiota and glomerulonephritis: An immunological point of view

      Abstract

      Glomerular injury is the major cause of chronic kidney diseases (CKD) worldwide and is characterized by proteinuria. Glomerulonephritis (GN) has a wide spectrum of etiologies, the intensity of glomerular damage, histopathology, and clinical outcomes that can be associated with the landscape of the nephritogenic immune response. Beyond impaired immune responses and genetic factors, recent evidence indicates that microbiota can be contributed to the pathogenesis of GN and patients’ outcomes by impacting many aspects of the innate and adaptive immune systems. It is still unknown whether dysbiosis induces GN or it is a secondary effect of the disease. Several factors such as drugs and nutritional problems can lead to dysbiosis in GN patients. It has been postulated that gut dysbiosis activates immune responses, promotes a state of systemic inflammation, and produces uremic toxins contributing to kidney tissue inflammation, apoptosis, and subsequent proteinuric nephropathy. In this review, the impact of gastrointestinal tract (GI) microbiota on the pathogenesis of the primary GN will be highlighted. The application of therapeutic interventions based on the manipulation of gut microbiota with special diets and probiotic supplementation can be effective in GN.

      Key Indexing Terms

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of the Medical Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Herrnstadt G.R.
        • Steinmetz O.M.
        The role of Treg subtypes in glomerulonephritis.
        Cell Tissue Res. 2021; 385: 293-304
        • Couser W.G.
        • Johnson R.J.
        The etiology of glomerulonephritis: roles of infection and autoimmunity.
        Kidney Int. 2014; 86: 905-914
        • Kaartinen K.
        • Safa A.
        • Kotha S.
        • et al.
        Complement dysregulation in glomerulonephritis.
        Semin Immunol. 2019; 45101331
        • Johnson R.J.
        • Hurtado A.
        • Merszei J.
        • et al.
        Hypothesis: dysregulation of immunologic balance resulting from hygiene and socioeconomic factors may influence the epidemiology and cause of glomerulonephritis worldwide.
        Am J Kidney Dis. 2003; 42: 575-581
        • Jones P.D.
        • Gibson P.G.
        • Henry R.L.
        The prevalence of asthma appears to be inversely related to the incidence of typhoid and tuberculosis: hypothesis to explain the variation in asthma prevalence around the world.
        Med Hypotheses. 2000; 55: 40-42
        • Holdsworth S.R.
        • Kitching A.R.
        • Tipping P.G.
        Th1 and Th2 T helper cell subsets affect patterns of injury and outcomes in glomerulonephritis.
        Kidney Int. 1999; 55: 1198-1216
        • Dong R.
        • Bai M.
        • Zhao J.
        • et al.
        A comparative study of the gut microbiota associated with immunoglobulin a nephropathy and membranous nephropathy.
        Front Cell Infect Microbiol. 2020; 10557368
        • Park J.I.
        • Kim T.Y.
        • Oh B.
        • et al.
        Comparative analysis of the tonsillar microbiota in IgA nephropathy and other glomerular diseases.
        Sci Rep. 2020; 10: 16206
        • Kaneko K.
        • Tsuji S.
        • Kimata T.
        Role of gut microbiota in idiopathic nephrotic syndrome in children.
        Med Hypotheses. 2017; 108: 35-37
        • Rahbar Saadat Y.
        • Hejazian M.
        • Bastami M.
        • et al.
        The role of microbiota in the pathogenesis of lupus: dose it impact lupus nephritis?.
        Pharmacol Res. 2019; 139: 191-198
        • Ahmadian E.
        • Rahbar Saadat Y.
        • Hosseiniyan Khatibi S.M.
        • et al.
        Pre-Eclampsia: microbiota possibly playing a role.
        Pharmacol Res. 2020; 155104692
        • Ardalan M.
        • Vahed SZ.
        Gut microbiota and renal transplant outcome.
        Biomed Pharmacother. 2017; 90: 229-236
        • Omenetti S.
        • Pizarro T.T.
        The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome.
        Front Immunol. 2015; 6: 639
        • Mu Q.
        • Zhang H.
        • Liao X.
        • et al.
        Control of lupus nephritis by changes of gut microbiota.
        Microbiome. 2017; 5: 73
        • Reigstad C.S.
        • Lundén G.O.
        • Felin J.
        • et al.
        Regulation of serum amyloid A3 (SAA3) in mouse colonic epithelium and adipose tissue by the intestinal microbiota.
        PLoS One. 2009; 4: e5842
        • Chen Y.Y.
        • Chen D.Q.
        • Chen L.
        • et al.
        Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease.
        J Transl Med. 2019; 17: 5
        • Ramezani A.
        • Raj D.S.
        The gut microbiome, kidney disease, and targeted interventions.
        J Am Soc Nephrol. 2014; 25: 657-670
        • Watanabe H.
        • Goto S.
        • Mori H.
        • et al.
        Comprehensive microbiome analysis of tonsillar crypts in IgA nephropathy.
        Nephrol Dial Transpl. 2017; 32: 2072-2079
        • Zhu A.
        • Yang X.
        • Bai L.
        • et al.
        Analysis of microbial changes in the tonsillar formalin-fixed paraffin-embedded tissue of Chinese patients with IgA nephropathy.
        Pathol Res Pract. 2020; 216153174
        • Rose D.J.
        • DeMeo M.T.
        • Keshavarzian A.
        • et al.
        Influence of dietary fiber on inflammatory bowel disease and colon cancer: importance of fermentation pattern.
        Nutr Rev. 2007; 65: 51-62
        • Sun M.
        • Wu W.
        • Liu Z.
        • et al.
        Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases.
        J Gastroenterol. 2017; 52: 1-8
        • Furusawa Y.
        • Obata Y.
        • Fukuda S.
        • et al.
        Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells.
        Nature. 2013; 504: 446-450
        • Mucida D.
        • Park Y.
        • Kim G.
        • et al.
        Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid.
        Science. 2007; 317: 256-260
        • Atarashi K.
        • Tanoue T.
        • Ando M.
        • et al.
        Th17 cell induction by adhesion of microbes to intestinal epithelial cells.
        Cell. 2015; 163: 367-380
        • Sano T.
        • Huang W.
        • Hall J.A.
        • et al.
        An IL-23R/IL-22 circuit regulates epithelial serum amyloid a to promote local effector Th17 responses.
        Cell. 2015; 163: 381-393
        • Round J.L.
        • Lee S.M.
        • Li J.
        • et al.
        The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota.
        Science. 2011; 332: 974-977
        • Ahmadian E.
        • Rahbar Saadat Y.
        • Dalir Abdolahinia E.
        • et al.
        The Role of Cytokines in Nephrotic Syndrome.
        Mediators Inflamm. 2022; 2022
        • Tipping P.G.
        • Holdsworth S.R.
        Cytokines in glomerulonephritis.
        Semin Nephrol. 2007; 27: 275-285
        • Forbes J.D.
        • Van Domselaar G.
        • Bernstein C.N.
        The gut microbiota in immune-mediated inflammatory diseases.
        Front Microbiol. 2016; 7: 1081
        • Tsuji S.
        • Kimata T.
        • Yamanouchi S.
        • et al.
        Regulatory T cells and CTLA-4 in idiopathic nephrotic syndrome.
        Pediatr Int. 2017; 59: 643-646
        • Bertelli R.
        • Bonanni A.
        • Di Donato A.
        • et al.
        Regulatory T cells and minimal change nephropathy: in the midst of a complex network.
        Clin Exp Immunol. 2016; 183: 166-174
        • Wu M.J.
        • Chang C.S.
        • Cheng C.H.
        • et al.
        Colonic transit time in long-term dialysis patients.
        Am J Kidney Dis. 2004; 44: 322-327
        • Jernberg C.
        • Löfmark S.
        • Edlund C.
        • et al.
        Long-term impacts of antibiotic exposure on the human intestinal microbiota.
        Microbiology. 2010; 156: 3216-3223
        • Goraya N.
        • Wesson D.E.
        Acid-base status and progression of chronic kidney disease.
        Curr Opin Nephrol Hypertens. 2012; 21: 552-556
        • Poveda J.
        • Sanchez-Niño M.D.
        • Glorieux G.
        • et al.
        p-cresyl sulphate has pro-inflammatory and cytotoxic actions on human proximal tubular epithelial cells.
        Nephrol Dial Transpl. 2014; 29: 56-64
        • Shi K.
        • Wang F.
        • Jiang H.
        • et al.
        Gut bacterial translocation may aggravate microinflammation in hemodialysis patients.
        Dig Dis Sci. 2014; 59: 2109-2117
        • Kanbay M.
        • Onal E.M.
        • Afsar B.
        • et al.
        The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus.
        Int Urol Nephrol. 2018; 50: 1453-1466
        • He H.
        • Lin M.
        • You L.
        • et al.
        Gut microbiota profile in adult patients with idiopathic nephrotic syndrome.
        Biomed Res Int. 2021; 20218854969
        • Beck L.H.
        • Bonegio R.G.
        • Lambeau G.
        • et al.
        M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy.
        N Engl J Med. 2009; 361: 11-21
        • Rosenzwajg M.
        • Languille E.
        • Debiec H.
        • et al.
        B- and T-cell subpopulations in patients with severe idiopathic membranous nephropathy may predict an early response to rituximab.
        Kidney Int. 2017; 92: 227-237
        • Kuroki A.
        • Iyoda M.
        • Shibata T.
        • et al.
        Th2 cytokines increase and stimulate B cells to produce IgG4 in idiopathic membranous nephropathy.
        Kidney Int. 2005; 68: 302-310
        • Masutani K.
        • Taniguchi M.
        • Nakashima H.
        • et al.
        Up-regulated interleukin-4 production by peripheral T-helper cells in idiopathic membranous nephropathy.
        Nephrol Dial Transpl. 2004; 19: 580-586
        • Debiec H.
        • Lefeu F.
        • Kemper M.J.
        • et al.
        Early-childhood membranous nephropathy due to cationic bovine serum albumin.
        N Engl J Med. 2011; 364: 2101-2110
        • Cesta MF.
        Normal structure, function, and histology of mucosa-associated lymphoid tissue.
        Toxicol Pathol. 2006; 34: 599-608
        • Fresquet M.
        • Jowitt T.A.
        • Gummadova J.
        • et al.
        Identification of a major epitope recognized by PLA2R autoantibodies in primary membranous nephropathy.
        J Am Soc Nephrol. 2015; 26: 302-313
        • Lang R.
        • Wang X.H.
        • Li A.F.
        • et al.
        Effects of Jian Pi Qu Shi Formula on intestinal bacterial flora in patients with idiopathic membranous nephropathy: a prospective randomized controlled trial.
        Chronic Dis Transl Med. 2020; 6: 124-133
        • Zhang J.
        • Luo D.
        • Lin Z.
        • et al.
        Dysbiosis of gut microbiota in adult idiopathic membranous nephropathy with nephrotic syndrome.
        Microb Pathog. 2020; 147104359
        • Wong J.
        • Piceno Y.M.
        • DeSantis T.Z.
        • et al.
        Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD.
        Am J Nephrol. 2014; 39: 230-237
        • Onal E.M.
        • Afsar B.
        • Covic A.
        • et al.
        Gut microbiota and inflammation in chronic kidney disease and their roles in the development of cardiovascular disease.
        Hypertens Res. 2019; 42: 123-140
        • Khanna R.
        Clinical presentation & management of glomerular diseases: hematuria, nephritic & nephrotic syndrome.
        Mo Med. 2011; 108: 33-36
        • Peng Z.
        • Tian J.
        • Cui X.
        • et al.
        Increased number of Th22 cells and correlation with Th17 cells in peripheral blood of patients with IgA nephropathy.
        Hum Immunol. 2013; 74: 1586-1591
        • Koyama A.
        • Sharmin S.
        • Sakurai H.
        • et al.
        Staphylococcus aureus cell envelope antigen is a new candidate for the induction of IgA nephropathy.
        Kidney Int. 2004; 66: 121-132
        • De Angelis M.
        • Montemurno E.
        • Piccolo M.
        • et al.
        Microbiota and metabolome associated with immunoglobulin a nephropathy (IgAN).
        PLoS One. 2014; 9: e99006
        • Piccolo M.
        • De Angelis M.
        • Lauriero G.
        • et al.
        Salivary microbiota associated with immunoglobulin a nephropathy.
        Microb Ecol. 2015; 70: 557-565
        • Brito J.S.
        • Borges N.A.
        • Dolenga C.J.
        • et al.
        Is there a relationship between tryptophan dietary intake and plasma levels of indoxyl sulfate in chronic kidney disease patients on hemodialysis?.
        J Bras Nefrol. 2016; 38: 396-402
        • Ayanga B.A.
        • Badal S.S.
        • Wang Y.
        • et al.
        Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy.
        J Am Soc Nephrol. 2016; 27: 2733-2747
        • Zhong Z.
        • Tan J.
        • Tan L.
        • et al.
        Modifications of gut microbiota are associated with the severity of IgA nephropathy in the Chinese population.
        Int Immunopharmacol. 2020; 89107085
        • Nagasawa Y.
        • Iio K.
        • Fukuda S.
        • et al.
        Periodontal disease bacteria specific to tonsil in IgA nephropathy patients predicts the remission by the treatment.
        PLoS One. 2014; 9: e81636
        • Ruszkowski J.
        • Lisowska K.A.
        • Pindel M.
        • et al.
        T cells in IgA nephropathy: role in pathogenesis, clinical significance and potential therapeutic target.
        Clin Exp Nephrol. 2019; 23: 291-303
        • He J.W.
        • Zhou X.J.
        • Li Y.F.
        • et al.
        Associations of genetic variants contributing to gut microbiota composition in immunoglobin a nephropathy.
        mSystems. 2021; 6: e00819-e00820
        • Yamaguchi H.
        • Goto S.
        • Takahashi N.
        • et al.
        Aberrant mucosal immunoreaction to tonsillar microbiota in immunoglobulin a nephropathy.
        Nephrol Dial Transpl. 2021; 36: 75-86
        • Luan S.
        • Zhang S.
        • Zhong H.
        • et al.
        Salivary microbial analysis of Chinese patients with immunoglobulin a nephropathy.
        Mol Med Rep. 2019; 20: 2219-2226
        • Coppo R.
        The gut-kidney axis in IgA nephropathy: role of microbiota and diet on genetic predisposition.
        Pediatr Nephrol. 2018; 33: 53-61
        • Jiang X.S.
        • Chen X.M.
        • Hua W.
        • et al.
        PINK1/Parkin mediated mitophagy ameliorates palmitic acid-induced apoptosis through reducing mitochondrial ROS production in podocytes.
        Biochem Biophys Res Commun. 2020; 525: 954-961
        • Goonewardene S.T.
        • Tang C.
        • Tan L.T.
        • et al.
        Safety and efficacy of pneumococcal vaccination in pediatric nephrotic syndrome.
        Front Pediatr. 2019; 7: 339
        • Kang Y.
        • Feng D.
        • Law H.K.
        • et al.
        Compositional alterations of gut microbiota in children with primary nephrotic syndrome after initial therapy.
        BMC Nephrol. 2019; 20: 434
        • Tsuji S.
        • Suruda C.
        • Hashiyada M.
        • et al.
        Gut microbiota dysbiosis in children with relapsing idiopathic nephrotic syndrome.
        Am J Nephrol. 2018; 47: 164-170
        • Tsuji S.
        • Akagawa S.
        • Akagawa Y.
        • et al.
        Idiopathic nephrotic syndrome in children: role of regulatory T cells and gut microbiota.
        Pediatr Res. 2021; 89: 1185-1191
        • Kubinak J.L.
        • Stephens W.Z.
        • Soto R.
        • et al.
        MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection.
        Nat Commun. 2015; 6: 8642
        • Bolnick D.I.
        • Snowberg L.K.
        • Caporaso J.G.
        • et al.
        Major Histocompatibility Complex class IIb polymorphism influences gut microbiota composition and diversity.
        Mol Ecol. 2014; 23: 4831-4845
        • Wu G.D.
        • Chen J.
        • Hoffmann C.
        • et al.
        Linking long-term dietary patterns with gut microbial enterotypes.
        Science. 2011; 334: 105-108
        • Jia X.
        • Horinouchi T.
        • Hitomi Y.
        • et al.
        Strong association of the HLA-DR/DQ locus with childhood steroid-sensitive Nephrotic syndrome in the Japanese population.
        J Am Soc Nephrol. 2018; 29: 2189-2199
        • Lane B.M.
        • Cason R.
        • Esezobor C.I.
        • et al.
        Genetics of childhood steroid sensitive nephrotic syndrome: an update.
        Front Pediatr. 2019; 7: 8
        • Uy N.
        • Graf L.
        • Lemley K.V.
        • et al.
        Effects of gluten-free, dairy-free diet on childhood nephrotic syndrome and gut microbiota.
        Pediatr Res. 2015; 77: 252-255
        • Leon J.
        • Pérez-Sáez M.J.
        • Uffing A.
        • et al.
        Effect of combined gluten-free, dairy-free diet in children with steroid-resistant nephrotic syndrome: an open pilot trial.
        Kidney Int Rep. 2018; 3: 851-860
        • Lemley K.V.
        • Faul C.
        • Schramm K.
        • et al.
        The effect of a gluten-free diet in children with difficult-to-manage nephrotic syndrome.
        Pediatrics. 2016; 138
        • Sanz Y.
        Effects of a gluten-free diet on gut microbiota and immune function in healthy adult humans.
        Gut Microbes. 2010; 1: 135-137
        • Fasano A.
        • Not T.
        • Wang W.
        • et al.
        Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease.
        Lancet. 2000; 355: 1518-1519
        • Trachtman H.
        • Gipson D.S.
        • Lemley K.V.
        • et al.
        Plasma zonulin levels in childhood nephrotic syndrome.
        Front Pediatr. 2019; 7: 197
        • Madhusudhan T.
        • Wang H.
        • Straub B.K.
        • et al.
        Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes.
        Blood. 2012; 119: 874-883
        • Tripathi A.
        • Lammers K.M.
        • Goldblum S.
        • et al.
        Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2.
        Proc Natl Acad Sci U S A. 2009; 106: 16799-16804
        • Schell C.
        • Huber TB.
        The evolving complexity of the podocyte cytoskeleton.
        J Am Soc Nephrol. 2017; 28: 3166-3174
        • de Andrade J.A.A.
        • Gayer C.R.M.
        • Nogueira N.P.A.
        • et al.
        The effect of thiamine deficiency on inflammation, oxidative stress and cellular migration in an experimental model of sepsis.
        J Inflamm. 2014; 11: 11
        • Jia L.
        • Jia Q.
        • Yang J.
        • et al.
        Efficacy of probiotics supplementation on chronic kidney disease: a systematic review and meta-analysis.
        Kidney Blood Press Res. 2018; 43: 1623-1635
        • Lopes R.
        • Balbino K.P.
        • Jorge M.P.
        • et al.
        Modulation of intestinal microbiota, control of nitrogen products and inflammation by pre/probiotics in chronic kidney disease: a systematic review.
        Nutr Hosp. 2018; 35: 722-730
        • Fortes P.M.
        • Teles Filho R.V.
        • Azevêdo L.H.S.
        • et al.
        Inflammatory cytokines and lipid profile in children and adolescents with nephrotic syndrome receiving L. Plantarum: a randomized, controlled feasibility trial.
        Rev Assoc Med Bras. 2020; 66 (1992): 1487-1492
        • Schmitt R.
        • Carlsson F.
        • Mörgelin M.
        • et al.
        Tissue deposits of IgA-binding streptococcal M proteins in IgA nephropathy and henoch-schonlein purpura.
        Am J Pathol. 2010; 176: 608-618
        • Chemouny J.M.
        • Gleeson P.J.
        • Abbad L.
        • et al.
        Modulation of the microbiota by oral antibiotics treats immunoglobulin a nephropathy in humanized mice.
        Nephrol Dial Transplant. 2019; 34: 1135-1144