Symposium| Volume 321, ISSUE 4, P292-299, April 2001

Anorectic Drugs and Pulmonary Hypertension from the Bedside to the Bench


      Anorectic drugs have been used for more than 30 years as an aid in weight reduction for obese persons. The use of aminorex, an amphetamine analog that increases norepinephrine levels in the central nervous system, led to an epidemic of primary pulmonary hypertension (PPH) in Europe in the late 1960s and early 1970s. The use of fenfluramine and later dexfenfluramine [drugs that inhibit 5-hydroxytryptamine (5-HT) release and reuptake and increases 5-Ht and thus 5-HT secretion in the brain] was associated with a second epidemic of PPH. All of these drugs have been voluntarily withdrawn from the market. The pathogenesis of PPH in patients treated with these agents is uncertain, but recent evidence suggests that potassium channel abnormalities and vasoactive and proliferative properties of 5-HT may play a role. There is increasing experimental evidence suggesting that aminorex, fenfluramine and dexfenfluramine inhibit 4-aminopyridine-sensitive currents in potassium channels resulting in vasoconstriction in pulmonary resistance vessels and perhaps smooth muscle cell proliferation. 5-HT causes pulmonary artery vasoconstriction and smooth muscle cell proliferation. Its levels are known to be high in those with fenfluramine-induced PPH. However, a firm cause-and-effect relationship has not yet been established. One potentially beneficial effect of the epidemics of anorectic-related PPH is that it may have provided important insights into the causes of PPH unrelated to anorectic agents.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to The American Journal of the Medical Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Voelkel N.F.
        • Clarke W.R.
        • Higenbottam T.
        Obesity, dexfenfluramine, and pulmonary hypertension. A lesson not learned?.
        Am J Respir Crit Care Med. 1997; 155: 786-788
        • Connolly H.M.
        • Crary J.L.
        • McGoon M.D.
        • et al.
        Valvular heart disease associated with fenfluramine-phentermine.
        N Engl J Med. 1997; 337: 581-588
        • Graham D.
        • Green L.
        Further cases of valvular heart disease associated with fenfluramine-phentermine.
        N Engl J Med. 1997; 337: 635
        • Khan M.
        • Herzog C.
        • St Peter J.
        • et al.
        The prevalence of cardiac valvular insufficiency assessed by transthoracic echocardiography in obese patients treated with appetite-suppressant drugs.
        N Engl J Med. 1988; 339: 713-718
        • Evrad P.
        • Allaz A.F.
        • Urban P.
        Myocardial infarction associated with the use of dexfenfluramine.
        B M J. 1990; 301: 345
        • Marinella M.
        • Berrettoni B.
        Digital necrosis associated with dexfenfluramine.
        N Engl J Med. 1997; 337: 1776-1777
        • Redmon B.
        • Raatz S.
        • Bantle J.
        Valvular heart disease associated with fenfluramine-phentermine [letter].
        N Engl J Med. 1997; 337: 1773-1774
        • Ackerman M.J.
        • Clapham D.E.
        Mechanisms of disease: ion channels—basic science and clinical disease.
        N Engl J Med. 1997; 336: 1575-1586
        • Ackerman M.J.
        The long QT syndrome: ion channel diseases of the heart.
        Mayo Clin Proc. 1998; 73: 250-269
        • Kane C.
        • Shepherd R.M.
        • Squires P.E.
        • et al.
        Loss of functional KATP channels in pancreatic beta-cells causes persistent hyperinsulinemic hypoglycemia of infancy.
        Nat Med. 1996; 2: 1344-1347
        • Martens J.
        • Gelband C.
        Ion channels in vascular smooth muscle: alterations in essential hypertension.
        Proc Soc Exp Biol Med. 1998; 218: 192-203
        • Rusch N.
        • Runnels A.
        Remission of high blood pressure reverses arterial potassium channel alterations.
        Hypertension (Dallas). 1994; 23: 941-945
        • Liu Y.
        • Hudetz A.
        • Knaus H.
        • et al.
        Increased expression of Ca2+ sensitive K+ channels in the cerebral microcirculation of genetically hypertensive rats: evidence for their protection against cerebral vasospasm.
        Circ Res. 1988; 82: 729-737
        • Takimoto K.
        • Li D.
        • Hershman K.
        • et al.
        Decreased expression of Kv4.2 and novel Kv4.3 K+ channel subunit mRNAs in ventricles of renovascular hypertensive rats.
        Circ Res. 1997; 81: 533-539
        • Kaab S.
        • Dixon J.
        • Ashen D.
        • et al.
        Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density.
        Circulation. 1998; 98: 1383-1393
        • Herve P.
        • Launay J.
        • Scrobonaci M.
        • et al.
        Increased plasma serotonin in primary pulmonary hypertension.
        Am J Med. 1995; 99: 249-254
        • Mark E.J.
        • Patalas E.D.
        • Chang H.T.
        • et al.
        Fatal pulmonary hypertension associated with short-term use of fenfluramine and phentermine.
        N Engl J Med. 1997; 337: 602-606
        • Yuan X.J.
        • Wang J.
        • Juhaszova M.
        • et al.
        Attenuated K+ channel gene transcription in primary pulmonary hypertension.
        Lancet. 1998; 351
        • Yuan X.
        • Aldinger A.
        • Juhaszova M.
        • et al.
        Dysfunctional voltage-gated potassium channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension.
        Circulation. 1998; 98: 1400-1406
        • Herve P.
        • Drouet L.
        • Dosquet C.
        • et al.
        Primary pulmonary hypertension in a patient with a familial platelet storage pool disease: role of serotonin.
        Am J Med. 1990; 89: 117-120
        • Kay J.
        • Smith P.
        • Heath D.
        Aminorex and the pulmonary circulation.
        Thorax. 1971; 26: 262-270
        • Mlczoch J.
        Drug and dietary induced pulmonary hypertension. Futura Publishing, Mount Kisco, (NY)1984
        • Greiser E.
        Epidemiologische untersuchungen zum Zusammenhang swishen appetitzueglere inhahme und pimaer vasculaer pulmonaler hypertonie.
        Internist. 1973; 14: 437-442
        • Douglas J.G.
        • Munro J.F.
        • Kitchin A.H.
        • et al.
        Pulmonary hypertension and fenfluramine.
        Br Med J (Clin Res Ed). 1981; 283: 881-883
        • Gaul G.
        • Blazek G.
        • Deutsch E.
        • et al.
        A case of chronic pulmonary hypertension after fenfluramine intake.
        Wien Klin Wochenschr. 1982; 22: 618-621
        • McMurray J.
        • Bloomfield P.
        • Miller H.
        Irreversible pulmonary hypertension after treatment with fenfluramine.
        Br Med J (Clin Res Ed). 1986; 292: 239-240
        • Pouwels H.
        • Smeets J.
        • Cheriex E.
        • et al.
        Pulmonary hypertension and fenfluramine.
        Eur Respir J. 1990; 3: 606-607
        • Brenot F.
        • Herve P.
        • Petitpretz P.
        • et al.
        Primary pulmonary hypertension and fenfluramine use.
        Br Heart J. 1993; 70: 537-541
        • McTavish D.
        • Heel R.
        Dexfenfluramine: a review of its pharmacologic properties and therapeutic potential in obesity.
        Drugs. 1992; 43: 713-733
        • Abenhaim L.
        • Moride Y.
        • Brenot F.
        • et al.
        Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group.
        N Engl J Med. 1996; 335: 609-616
        • Strother J.
        • Fedullo P.
        • Yi E.S.
        • et al.
        Complex vascular lesions at autopsy in a patient with phentermine-fenfluramine use and rapidly progressing pulmonary hypertension.
        Arch Pathol Lab Med. 1999; 123: 539-540
        • Rothman R.B.
        • Ayestas M.A.
        • Dersch C.M.
        • et al.
        Aminorex, fenfluramine and chlorphentermine are serotonin transporter substrates: implications for primary pulmonary hypertension.
        Circulation. 1999; 100: 869-875
        • Rubin L.J.
        Primary pulmonary hypertension.
        N Engl J Med. 1997; 336: 111-117
        • Weir E.K.
        • Reeve H.L.
        • Huang J.
        • et al.
        Anorexic agents aminorex, fenfluramine and dexfenfluramine inhibit potassium current in rat pulmonary vascular smooth muscle and cause pulmonary vasoconstriction.
        Circulation. 1996; 94: 2216-2220
        • Fristrom S.
        • Airaksinen M.M.
        • Halmekoski J.
        Release of platelet 5-HT by some anorexic and other sympathomimetics and their acetyl derivatives.
        Acta Pharmacol Toxicol (Copenh). 1977; 41: 218-224
        • Michelakis E.
        • Johnson G.
        • Leis L.
        • et al.
        Dexfenfluramine and 4-aminopyridine (an inhibitor of voltage-gated potassium channels) increase serotonin release from human platelets [abstract].
        Respir Crit Care Med. 1988; 157: A588
        • Nelson M.
        • Quayle J.
        Physiological roles and properties of potassium channels in arterial smooth muscle cells.
        Am J Physiol. 1995; 37: C799-C822
        • Archer S.
        • Souil E.
        • Dinh-Xuan A.
        • et al.
        Molecular identification of the role of voltage-gated K channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes.
        J Clin Invest. 1998; 101: 2319-2330
        • Archer S.L.
        • Huang J.M.C.
        • Reeve H.L.
        • et al.
        Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia.
        Circ Res. 1996; 78: 431-442
        • Yuan X.
        • Wang J.
        • Golovina V.
        • et al.
        Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells.
        Am J Physiol. 1998; 274: L621-L635
        • Weir E.K.
        • Archer S.L.
        The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels.
        FASEB J. 1995; 9: 183-189
        • Ghiani C.A.
        • Yuan X.
        • Eisen A.M.
        • et al.
        Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27 (Kip1) and p21 (CIP1) in glial progenitor cells.
        J Neurosci. 1999; 19: 5380-5392
        • Yao X.
        • Kwan H.Y.
        Activity of voltage-gated K+ channels is associated with cell proliferation and Ca2+ influx in carcinoma cells of colon cancer.
        Life Sci. 1999; 65: 55-62
        • Michelakis E.
        • Reeve H.
        • Huang J.
        • et al.
        Potassium channel diversity in vascular smooth muscle cells.
        Can J Physiol Pharmacol. 1995; 75: 889-897
        • Wang J.
        • Juhaszova M.
        • Conte J.V.J.
        • et al.
        Action of fenfluramine on voltage-gated K+ channels in human pulmonary artery smooth muscle cells.
        Lancet. 1998; 352: 290
        • Michelakis E.D.
        • Weir E.K.
        • Nelson D.P.
        Dexfenfluramine elevates systemic blood pressure by inhibiting potassium currents in vascular smooth muscle cells.
        J Pharmacol Exp Ther. 1999; 291: 1143-1149
        • Reeve H.
        • Tolarova S.
        • Michelakis E.
        • et al.
        Effects of the anorectic agent dexfenfluramine and 4-aminopyridine of the ductus arteriosus during development.
        Circulation. 1997; 96 (I-245)
        • Hu S.
        • Wang S.
        • Gibson J.
        • et al.
        Inhibition of delayed rectifier K+ channels by dexfenfluramine (Redux).
        J Pharmacol Exp Ther. 1998; 287: 480-486
        • Weir E.
        • Reeve H.
        • Johnson G.
        • et al.
        A role for potassium channels in smooth muscle cells and platelets in the etiology of primary pulmonary hypertension.
        Chest. 1988; 114: 200S-2004S
        • Patel A.
        • Lazdunski M.
        • Honore E.
        Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K channel in oxygen-sensitive pulmonary artery myocytes.
        EMBO J. 1997; 16: 6615-6625
        • Reeve H.L.
        • Archer S.L.
        • Soper M.
        • et al.
        Dexfenfluramine increases pulmonary artery smooth muscle intracellular calcium, independent of membrane potential.
        Am J Physiol. 1999; 277: L662-L666
        • Naeije R.
        • Maggiorini M.
        • Delcroix M.
        • et al.
        Effects of chronic dexfenfluramine treatment on pulmonary hemodynamics in dogs.
        Am J Respir Crit Care Med. 1996; 154: 1347-1350
        • Frishman W.H.
        • Huberfeld S.
        • Okin S.
        • et al.
        Serotonin and serotonin antagonism in cardiovascular and non-cardiovascular disease.
        J Clin Pharmacol. 1995; 35: 541-572
        • Fishman A.P.
        • Pietra G.G.
        Handling of bioactive materials by the lung.
        N Engl J Med. 1974; 291: 953-959
        • Eddahibi S.
        • Raffestin B.
        • Launay J.
        • et al.
        Effect of dexfenfluramine treatment in rats exposed to acute and chronic hypoxia.
        Am J Respir Crit Care Med. 1988; 157: 1111-1119
        • Morita T.
        • Mehendale H.M.
        Effects of chlorphentermine and phentermine on the pulmonary disposition of 5-HT in the rat in vivo.
        Am Rev Respir Dis. 1983; 127: 747-750
        • Archer S.
        • Djaballah K.
        • Humbert M.
        • et al.
        Nitric oxide deficiency in pulmonary hypertension associated with use of the anorectic agents fenfluramine and dexfenfluramine.
        Am J Resp Crit Care Med. 1998; 158: 1061-1067
        • Tuder R.
        • Radisavljevic Z.
        • Shroyer K.
        • et al.
        Monoclonal endothelial cells in appetite suppressant-associated pulmonary hypertension.
        Am J Respir Crit Care Med. 1998; 158: 1999-2001
        • VanItallie T.B.
        Prevalence of obesity.
        Endocrinol Metab Clin North Am. 1996; 25: 887-905
        • McNeely W.
        • Goa K.
        Sibutramine. A review of its contribution to the management of obesity.
        Drugs. 1998; 56: 1093-1124
        • Van Gaal L.
        • Wauters M.
        • De Leeuw I.
        Anti-obesity drugs: what does sibutramine offer? An analysis of its potential contribution to obesity treatment.
        Exp Clin Endocrinol Diabetes. 1998; 106: 35-40
        • Anonymous
        American Heart Association urges caution on a new diet drug.
        Circulation. 1998; 97: B3